首页> 外文OA文献 >Voronoi-based compact image descriptors: Efficient Region-of-Interest retrieval with VLAD and deep-learning-based descriptors
【2h】

Voronoi-based compact image descriptors: Efficient Region-of-Interest retrieval with VLAD and deep-learning-based descriptors

机译:基于Voronoi的紧凑图像描述符:有效的感兴趣区域   使用VLaD和基于深度学习的描述符进行检索

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We investigate the problem of image retrieval based on visual queries whenthe latter comprise arbitrary regions-of-interest (ROI) rather than entireimages. Our proposal is a compact image descriptor that combines thestate-of-the-art in content-based descriptor extraction with a multi-level,Voronoi-based spatial partitioning of each dataset image. The proposedmulti-level Voronoi-based encoding uses a spatial hierarchical K-means overinterest-point locations, and computes a content-based descriptor over eachcell. In order to reduce the matching complexity with minimal or no sacrificein retrieval performance: (i) we utilize the tree structure of the spatialhierarchical K-means to perform a top-to-bottom pruning for local similaritymaxima; (ii) we propose a new image similarity score that combines relevantinformation from all partition levels into a single measure for similarity;(iii) we combine our proposal with a novel and efficient approach for optimalbit allocation within quantized descriptor representations. By deriving both aVoronoi-based VLAD descriptor (termed as Fast-VVLAD) and a Voronoi-based deepconvolutional neural network (CNN) descriptor (termed as Fast-VDCNN), wedemonstrate that our Voronoi-based framework is agnostic to the descriptorbasis, and can easily be slotted into existing frameworks. Via a range of ROIqueries in two standard datasets, it is shown that the Voronoi-baseddescriptors achieve comparable or higher mean Average Precision againstconventional grid-based spatial search, while offering more than two-foldreduction in complexity. Finally, beyond ROI queries, we show that Voronoipartitioning improves the geometric invariance of compact CNN descriptors,thereby resulting in competitive performance to the current state-of-the-art onwhole image retrieval.
机译:当视觉查询包含任意感兴趣区域(ROI)而不是整个图像时,我们研究了基于视觉查询的图像检索问题。我们的建议是一个紧凑的图像描述符,它将基于内容的描述符提取中的最新技术与每个数据集图像的基于Voronoi的多级空间分区相结合。所提出的基于Voronoi的多级编码使用空间分层K均值过分关注点,并在每个单元格上计算基于内容的描述符。为了以最小的牺牲性能或没有牺牲的牺牲性能来降低匹配的复杂性:(i)我们利用空间分层K均值的树结构对局部相似度最大值进行从上到下的修剪; (ii)我们提出了一个新的图像相似性评分,它将来自所有分区级别的相关信息合并为一个相似性度量;(iii)我们将我们的提议与一种新颖有效的方法相结合,用于量化描述符表示中的最佳比特分配。通过导出基于Vooroioi的VLAD描述符(称为Fast-VVLAD)和基于Voronoi的深度卷积神经网络(CNN)描述符(称为Fast-VDCNN),我们证明了基于Voronoi的框架与该描述符基本不可知,并且可以轻松地放入现有框架中。通过两个标准数据集中的一系列ROI查询,表明基于Voronoi的描述符与传统的基于网格的空间搜索相比具有可比或更高的平均精度,同时提供了两倍以上的复杂度降低。最后,除了ROI查询之外,我们还显示Voronoipartitioning改善了紧凑型CNN描述子的几何不变性,从而与当前最新的整体图像检索相比具有竞争优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号